Multi-label Classification for Image Annotation via Sparse Similarity Voting
نویسندگان
چکیده
We present a supervised multi-label classification method for automatic image annotation. Our method estimates the annotation labels for a test image by accumulating similarities between the test image and labeled training images. The similarities are measured on the basis of sparse representation of the test image by the training images, which avoids similarity votes for irrelevant classes. Besides, our sparse representation-based multi-label classification can estimate a suitable combination of labels even if the combination is unlearned. Experimental results using the PASCAL dataset suggest effectiveness for image annotation compared to the existing SVM-based multi-labeling methods. Nonlinear mapping of the image representation using the kernel trick is also shown to enhance the annotation performance.
منابع مشابه
Tags Re-ranking Using Multi-level Features in Automatic Image Annotation
Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...
متن کاملConcurrent Image Classification and Annotation Using Efficient Multi-layer Group Sparse Coding
The multi-layer group sparse coding framework is presented for the purpose of image classification and annotation. This paper introduces the multi-layer group sparse structure of the image reconstruction coefficients to leverage the needs between the class label and tags. The sparse structure translates the mutual dependency among the class label that defines the whole image content. The tags d...
متن کاملFuzzy Neighbor Voting for Automatic Image Annotation
With quick development of digital images and the availability of imaging tools, massive amounts of images are created. Therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. Automatic image annotation (AIA) or refers to attaching words, keywords or comments to an image or to a selected part of it. In this paper,...
متن کاملMulti-layer group sparse coding - For concurrent image classification and annotation
We present a multi-layer group sparse coding framework for concurrent image classification and annotation. By leveraging the dependency between image class label and tags, we introduce a multi-layer group sparse structure of the reconstruction coefficients. Such structure fully encodes the mutual dependency between the class label, which describes the image content as a whole, and tags, which d...
متن کاملAutomatic Image Annotation Using Modified Multi-label Dictionary Learning
Automatic image annotation has attracted lots of research interest, and effective method for image annotation. Find effectively the correlation among labels and images is a critical task for multi-label learning. Most of the existing multi-label learning methods exploit the label correlation only in the output label space, leaving the connection between label and features of images untouched. I...
متن کامل